Front cover image for Excitatory amino acids and epilepsy

Excitatory amino acids and epilepsy

eBook, English, ©1986
Plenum Press, New York, ©1986
Congress
1 online resource (xi, 735 pages) : illustrations
9781468479713, 1468479717
747326704
Session I. The Limbic System: Neuroanatomical Concepts Relating to Epileptic Phenomena.- Amygdalohippocampal and Amygdalocortical Projections in the Primate Brain.- Subcortical Projections from the Amygdaloid Complex.- Cortical and Subcortical Afferents of the Amygdaloid Complex.- Putative Amino Acid Transmitters in the Amygdala.- A Survey of the Anatomy of the Hippocampal Formation, With Emphasis on the Septotemporal Organization of its Intrinsic and Extrinsic Connections.- Cytochemical Architecture of the Entorhinal Area.- Session I: Commentary.- Session II. Epileptic Brain Tissue: Neuropathology and Physiology in Animals and Man.- Neuronal and Glial Pathologies: Morphology and Physiology of Human and Monkey Epileptic Foci.- Metabolic, Morphologic and Electrophysiologic Profiles of Human Temporal Lobe Foci: An Attempt at Correlation.- Endogenous Excitotoxins as Possible Mediators of Ischemic and Hypoglycemic Brain Damage.- Role of the Substantia Nigra in the Kindling Model of Limbic Epilepsy.- Long Term Sequelae of Parenteral Administration of Kainic Acid.- Electrophysiology of Epileptic Tissue: What Pathologies are Epileptogenic?.- Session III. Excitatory Amino Acids and the Blood-Brain Barrier.- Pathophysiological Aspects of Blood-Brain Barrier Permeability in Epileptic Seizures.- Blood-Brain Barrier Permeability to Excitatory Amino Acids.- Limbic Seizures Induced by Systemically Applied Kainic Acid: How Much Kainic Acid Reaches the Brain?.- Extravasated Protein as a Cause of Limbic Seizure-Induced Brain Damage: An Evaluation Using Kainic Acid.- Ultrastructural Analysis of Rat Brain Tissue Following Systemic Kainate Administration.- Session III: Commentary.- Session IV. Excitatory Amino Acids: Receptor Interactions.- Anatomical Organization of Excitatory Amino Acid Receptors and their Properties.- Homocysteic Acid, an Endogenous Agonist of NMDA-Receptor: Release, Neuroactivity, and Localization.- Excitatory Amino Acid Pathways in the Brain.- Synthesis and Release of Amino Acid Transmitters.- Na+ Fluxes as a Tool to Identify Anticonvulsant Antagonists of Neuroexcitation.- Involvement of Excitatory Amino Acid Receptors in the Mechanisms Underlying Excitotoxic Phenomena.- Session IV: Commentary.- Session V. Excitatory Amino Acids and Seizures: Neurochemical Interrelationships.- Excitatory Amino Acid Antagonists as Novel Anticonvulsants.- The Hyperexcited Brain: Glutamic Acid Release and Failure of Inhibition.- Anti.-Excitotoxic Actions of Taurine in the Rat Hippocampus Studied In Vivo and In Vitro.- Alterations in Extracellular Amino Acids and Ca2+ Following Excitotoxin Administration and During Status Epilepticus.- Acidic Peptides in Brain: Do They Act at Putative Glutamatergic Synapses?.- Session V: Commentary.- Session VI. Mechanisms of Epileptogenesis.- Synaptic Events Underlying Spontaneous and Evoked Paroxysmal Discharges in Hippocampal Neurons.- Inward Currents in Cat Neocortical Neurons Studied In Vitro.- Synchronization of Pyramidal Cell Firing by Ephaptic Currents in Hippocampus In Situ.- Excitatory Amino Acids and Regenerative Activity in Cultured Neurons.- Long-Term Alterations in Amino Acid-Induced Ionic Conductances in Chronic Epilepsy.- Excitatory Amino Acids and Epilepsy-Induced Changes in Extracellular Space Size.- Session VI: Commentary.- Session VII. Excitatory Amino Acids: Physiological Studies.- Evidence for the Activation of the N-Methyl-D-Aspartate Receptor During Epileptiform Discharge.- Effects of Kainate on CA1 Hippocampal Neurons Recorded In Vitro.- Blockade by D-Aminophosphonovalerate or Mg2+ of Excitatory Amino Acid-Induced Responses on Spinal Motoneurons In Vitro.- The Membrane Action of Excitatory Amino Acids on Cultured Mouse Spinal Cord Neurons.- A Patch-Clamp Study of Excitatory Amino Acid Activated Channels.- Amino Acid Activated Receptor-Channels at Peripheral and Central Synapses.- Expression of Vertebrate Amino Acid Receptors in Xenopus Oocytes.- Session VII: Commentary.- Session VIII. Metal Ions and Epilepsy.- Transition Metal Ions in Epilepsy: An Overview.- Zinc-Binding Proteins in the Brain.- Neurobehavioral, Neuroendocrine and Neurochemical Effects of Zinc Supplementation in Rats.- Excitatory Amino Acids and Divalent Cations in the Kindling Model of Epilepsy.- Effect of Zinc on Neuronal Activity in the Rat Forebrain.- Relationship of Glutamic Acid and Zinc to Kindling of the Rat Amygdala: Afferent Transmitter Systems and Excitability in a Model of Epilepsy.- Session VIII: Commentary.- Session IX. Seizures and Brain Damage: The Excitotoxic Link.- Inciting Excitotoxic Cytocide Among Central Neurons.- Selective and Non-selective Seizure Related Brain Damage Produced by Kainic Acid.- On the Role of Seizure Activity and Endogenous Excitatory Amino Acids in Mediating Seizure-Associated Hippocampal Damage.- Kainic Acid Seizures and Neuronal Cell Death: Insights from Studies of Selective Lesions and Drugs.- Glutamate and Anoxic Neuronal Death In Vitro.- Quinolinic Acid: A Pathogen in Seizure Disorders?.- Session IX: Commentary.- Contributors.
Electronic reproduction, [Place of publication not identified], HathiTrust Digital Library, 2011
archive.org Free eBook from the Internet Archive
openlibrary.org Additional information and access via Open Library